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Abstract—A Bitcoin Is an electronic payment method that is based on cryptographic proof instead of trust [1] allowing any two users to manage their 
transactions without dependence on a third party organization (a financial institution). Each party can transfer Bitcoins to the other digitally by signing a 
previous hash along with the public key of the next owner and so on. The Bitcoin network timestamps the transactions into blocks and hashes them into 
a chain of a hash based proof-of-work [1] (block chain) and combining them into a block. Such a chain is known as a block chain. It is decided that the 
longest block chain shall serve as the proof of the sequence of transactions witnessed by the network. Also it is a proof that it came from the largest pool 
of computational power put in by Bitcoin Miners (people who help in generating new blocks for the proof-of-work in return for a bounty). A major issue 
with the Bitcoin network is the problem of attacking nodes trying to double-spend the Bitcoin transactions i.e. re-spend the money they have already 
spent. They can do so by trying to generate an alternate chain faster than the honest nodes. As long as these honest nodes manage the majority of 
computational power, the attacker node wont be able to interfere with the block chain. In this paper we see how effective the traditional bitcoin proof-of-
work policy is against the attackers and what measures and methods can be adopted in order to nullify the probability of an attacker to interfere with the 
block chain. 
 
Index Terms—Bitcoin, Cryptocurreny, Block Chain, Hashing, Proof-of-Work, Double-spending, Momentum Method, Proof of Stake. 

——————————      —————————— 
 
 
 
1. INTRODUCTION 
 

A peer-to-peer version of electronic cash would allow online 
payments to be sent directly from one party to another, 
without the interference of a financial institution. Though 
digital signatures provide a solution, main benefits are lost if a 
trusted third party is still required to prevent double 
spending. Hence we propose a solution to double spending 
using a peer-to-peer network. The networks puts timestamps 
on the transactions by hashing them into an ongoing chain of 
hash based proof-of-work and combines these transactions 
into block. The longest chain of these blocks i.e. the longest 
block chain serves as a proof of the sequence of 
events/transactions witnessed, but also it’s a proof that it 
came from the largest pool of computational power. As long 
as Bitcoin Miners (people who help in generating new blocks 
for the block chain in return for a bounty) i.e. the non-
attacking nodes control the majority of the CPU power, they 
will end up generating the longest and valid block chain, 
which would get accepted in the network, thus preventing the 
attacking nodes to modify the block chain. The network itself 
requires a very minimal structure. Messages are broadcast on 
a best effort basis and the nodes are allowed to leave the 
network and then rejoin, accepting the longest and most valid 
block chain as the proof-of-work as to what transactions took 
place in the network while they were gone. Bitcoin is an 
electronic payment system which is based on cryptographic 
proof instead of trust thus allowing two users to handle 
transactions with each other without depending on a third 
party. Each user transfers the Bitcoins to the other user using 
digitally by signing a previous hash along with public key of 
the next owner and so on. 
2. TRADITIONAL PROOF-OF-WORK 

 

In order for the attacking node to interfere with the block 
chain, it would have to simultaneously generate an alternate 
chain of the hash based proof-of-work faster than the actual 
block chain so that the attackers chain would be accepted as 
the longest and treated as the new proof-of-work. Once the 
attacker achieves this, his altered and faulty transactions are 
accepted into the Bitcoin network allowing him to re-spend 
any Bitcoins he has already spent. We consider the probability 
of an attacker trying to generate an alternate chain faster than 
the honest nodes In-spite of the attacker being successful; the 
system does not open up to arbitrary changes or any kind of 
attacks. This is possible because a node will not accept an 
invalid transaction as payment and no honest node will accept 
a block with it. Hence an attacking node can only change his 
transactions in order to re-spend the money he has already 
spent. The probability of an attacking node to catch up with 
the block chain is analogous to a Gamblers Ruin problem. We 
can calculate the probability that a gambler with unlimited 
credit plays an infinite number of trials to reach breakeven or 
that an attacker catches up with an honest block chain. [2] 

 
A block in a block chain is said to have n confirmations if it 

is a part of the valid chain with n blocks. It’s generally an 
assumption that a transaction with enough number of 
confirmations is safe from double spending. 
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A merchant generally waits for n confirmations of the paying 
users transaction and then provides the product. The chances 
of the attacker successfully trying to double spend depends 
upon his disadvantage i.e. the value of z at the time n 
confirmations are reached. Here we use a model m more 
accurately as a negative binomial variable. It is the number of 
successes (blocks found by the attacker) before n failures 
success [3]. The probability for a given value of m is 
 

 
 
 

Once n blocks are found by the honest network in a period of 
time during which m+1 blocks are found by the attacker, the 
race starts with z=n-m-1. 
 
It follows that the probability for the double spend to succeed 
when the merchant waits for n confirmations is [3]: 
 

 
 
 
3. MOMENTUM METHOD 
 

The traditional method of maintaining a hash based proof-
of-work as proposed by Satoshi Nakamoto [1] is proved to 
be effective against majority of the attacking nodes but it has 
its own disadvantages. In general a proof-of-work schemes 
are developed in such a way that they are difficult to solve 
but relatively easier to verify. Most proof-of-work schemes 
achieve their verification through just one round of an 
embarrassingly parallel search algorithms [4]. These 
algorithms quickly adapt themselves to graphic cards, 
FPGAs, or even ASIC designs. Achieving this would give the 
attacker a huge advantage over the common computer. In 
crypto-currencies like Bitcoins, the main motive of the proof-
of-work is decentralization of trust. Thus, in such a case it is 
mandatory that the proof-of-work is able to build resistance 
towards the acceleration and optimization by various 
graphic cards, FPGAs or ASIC designs. Hence, to avoid such 
attacks using custom hardware, we introduce the concept of 
memory-hard proof-of-work algorithms. One such approach 
is the use a Sequential Memory Hard Function [5] such as 
Srypt. But the issue with this approach is that it uses up a lot 
of memory and as it does so, the ability to be easily verifiable 
is lost. 
 

To achieve the goal of being trivial to verify but memory 
oriented to solve, the proof-of-work must have asymmetry 
in the amount of memory required to validate the work. 
Algorithms can be made memory-hard by requiring a 
solution that depends upon the relationship between any 
two or more parallel steps and thus benefit from the storage 
of result in every parallel step. Performing just two or three 
parallel steps and checking results and comparing them can 
quickly verify the result. The most straightforward example 
is finding collisions based upon the Birthday Problem [3]. In 
probability theory, the birthday problem concerns the 
probability that in a set of n randomly chosen people, some 
pair of them will have the same birthday. By the pigeonhole 
principle, the probability reaches 100 per cent when the 
number of people reaches 367. However, 99 per cent 
probability is reached with just 57 people, and 50 per cent 
probability with 23 people. These conclusions assume that 
each day of the year is equally probable for a birthday. 
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The figure above shows us the advantage we get by recording 
all n solutions while matching birthdays. We observe 
graphically the benefit we achieve by remembering all n 
solutions in the search for matching birthdays. If you increase 
the requirement to finding 3 people with the same birthday 
then the memory requirements exceed 1 gigabyte on average. 
Any attempt to replace memory with computation would 
force the algorithm to follow the q (n) curve, which is at such 
an algorithmic disadvantage that massive parallelism cannot 
overcome the need for memory to efficiently solve this issue. 
The best hope is to generate potential matches in parallel but 
results will have to be stored for most efficient solutions. 
 

The most straightforward solution would need an array of a 
few billion items and will have to check the memory after 
finding a potential result. This approach will require around 
500GB of RAM and hence is obviously impractical. Another 
proposed solution is the use of an hash table which would 
solve the memory issue but for an attacker, the hash table 
becomes the source of slow atomic operations. The 
embarrassingly parallel birthday generation step is restricted 
by the need to synchronize the storage in the hash table. This 
last synchronization step places a limit on the amount of 
parallelism that can be employed [4]. 
 

Thus the algorithm being used in this paper basically 
assumes a cryptographically secure hashing function Hash(x) 
and a Sequential Memory-hard hashing function Birthday-
Hash(x) such as Scrypt. The algorithm for this proof-of-work 
can be defined as: 
 

Given a block of data D, calculate H = Hash(D). Find nonce 
A and nonce B such that  
BirthdayHash(A +H) == BirthdayHash( B+H)  
If Hash(H + A + B) < TargetDifficulty then a result has been 
found, otherwise keep searching [4]. 
 

In case of Bitcoins, along with being memory hard, the 
proof-of-work must also be flexible enough. Hence, due to 
this, the final step of the proof-of-work is to perform the hash 

of data and both birthday nonces and check if the result is 
below a certain value. This final step behaves just like Scrypt 
based systems. We infer that the best result could be 
achieved if we combine the birthday search with the 
traditional memory hard function such as Scrypt. 
 

With traditional proof-of-work systems like SHA256 or 
Scrypt, it’s possible to gain performance by using parallelism 
alone. However, the use of memory should scale to store the 
result of every parallel run or the algorithmic disadvantage 
would be lost. We see that the performance of the proof-of-
work increases with the time it runs filling the memory up 
with potential birthday matches. As a result, this algorithm 
has some momentum to it making it expensive to restart the 
search with a new data block. This momentum proves to be 
very useful for the Bitcoin miners as they could gain some 
advantage by adjusting the structure of the block being 
mined every time new data is available. An efficient strategy 
of mining is to cache all the received transactions while 
mining the current block until someone finds the current 
block, and then he could create a new block consisting of all 
the transactions cached. This property means that a 
transaction broadcast 5 seconds after the last block was 
found has no advantage over a transaction broadcast 5 
minutes after the last block was found because few miners 
will begin working on including either transaction until the 
next block is found. It is because of the momentum property 
that we have named this proof of work system 
Momentum[4].  

 
 

4. PROOF-OF-STAKE METHOD 
 

Satoshi Nakamoto’s [1] Bitcoin software assumes a faulty 
and insecure and adversarial peer-to-peer environment. 
There is no distinction with respect ot the capabilities of full 
node peers, nor of the mesh network connections between 
them. Transactions are relayed and accepted into the block 
chain on best effort basis. A new transaction reaches 50 per 
cent of the nodes within 1.2 seconds and 90 per cent within 
2.9 seconds [7]. Transactions are not timestamped. There is 
no definite version of the blockchain. A hard-fork 
reconfiguration of the peer-to-peer Bitcoin network is 
described that substitutes tamper-evident logs and proof-of-
stake consensus for proof-of-work consensus. Proof-of-stake 
was first mentioned in July, 2011 by Quantum Mechanic[8] 
Stake-voting as a method to achieve distributed consensus 
for building the blockchain was not available as an option to 
Satoshi because Bitcoin started in 2009 with no stake. In 
contrast to the original Bitcoin, the system as proposed by 
Nick Szabo [9] [10][11], exhibits a coordinated behavior. 
According to him, a trust independent cooperation would be 
possible through authenticated peer attestation of correct 
behavior. Consensus is mainly required when misbehavior is 
detected. The method resists adversaries lacking satisfactory 
amount of stake. A faulty or misbehaving node is 
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disconnected from the network by a group of stake-weighted 
peers. A central mint directly receives the transactions and 
records its arrivals followed by a broadcast of the accepted 
transaction to its peers. Since there is single mint, proof-of-
work is not needed. As mentioned by Szabo, this mint system 
is prone to problems such as centralization and lack of 
redundancy. Failure of the mint causes failure of the entire 
network. Thus the proof-of-stake system is implemented as a 
hierarchical network of transparent nomadic software agents 
executing a common open-source software program with 
differing roles. There are no humans in the loop except as 
owners of nodes, which host the agents. The human node 
owner may offer a controlled bitcoin address-containing stake 
in return for daily dividends, but is otherwise anonymous 
[12]. 

 
 

 
 
 

This paid for enterprise class network is configured as a 
super peer network [13] and is capable of handling 
transactions all over the world. In this system, certain nodes 
are given priorities and capabilities superior to the other nodes 
in the network. These super peer nodes act as the backbone of 
the network. The traffic flows through these backbone nodes 
to reach the mint. The accepted transactions and new hashes 
flow out from the mint to the nodes. Each node has several 
connections to super peers. Along with the branded entities 
super peer nodes, full nodes exist that serve hosted wallets, 
payment processors, exchanges. Such full nodes are likely to 
be connected to reliable branded super peers. 

 
This system uses an attestable unforgeable log 

organization inspired by Nick Szabo. This system uses an 
attested append only memory. It remains correct and keeps 
making progress even when half the replicas are faulty. 
 

Each full node present in the network has a synchronous 
replica of the single block chain in the network and 
consensus agreement as to the latest block hash and the time 
stamped order of the accepted transactions. All the nodes 
agree upon the date and time and the calendar of the super 
peer agent activities. Every full and super node has an 
identical software capable of performing any particular role. 
Every node in the network validates and maintains a copy of 
the single, longest blockchain and the current hash. 
 
A new full node is given a set of peer nodes. This node 
checks for the fitness of its peers. The new node solicits the 
members of the set of super-peers from 10 randomly 
connected nodes. The new node then connects to three super 
peers, which have low latency provided they are willing to 
accept additional full nodes. The new node provides 
justification as to if it should be a member of the super-peer 
set when asked by the unique configuration node. 
 

The new node provides justification as to if it should be a 
member of the super-peer set when asked by the unique 
configuration node [12]. In this algorithm, super peer nodes 
host a variety of agents. A brief description of these agents is 
given below: 

 
Configuration Agent: The single configuration agent, which 
is hosted by a super peer node, has the responsibility of 
choosing which nodes are super-peers and setting the 
schedule of the nomadic agents i.e. the agents that haven’t 
been assigned a responsibility as yet. 

 
Seed Agents: The seed agents, hosted by super peer nodes, 
have the responsibility for seeding full nodes that join the 
network. The seeded full node selects the seeding agent 
having the optimal combination of low latency and current 
load. 

 
Mint Agents: The mint agents hosted by a super peer node 
has the responsibility of creating new blocks and minting 
new coins. New blocks are generated at the rate of six blocks 
per hour. Received transactions are immediately broadcast 
back into the network so that all full nodes may build the 
new block in synchronization with the mint agent. 
 
Reward Agent: The reward agent distributes dividends 
daily to full nodes. By default, full nodes are compensated 
for their operating costs by a fixed proportion, and 
additionally receive a reward in proportion to their offered 
stake. 
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Audit Agents: The primary audit agent is a singleton having 
the responsibility of a passive and active auditor. It receives 
reports of any inconsistencies from any other node, e.g. some 
disagreement among the nodes, and then investigates it. The 
secondary audit agents perform random checks that support 
the functionality of the primary audit agent and in certain 
cases offloads audit tasks for parallelization. 
 
Recovery Agent: The recovery agent is a single node, which 
has the responsibility of performing fault-recovery. A typical 
fault recovery in case of a defective mint would be the rollback 
of the last committed block, moving its transactions into a 
replacement block by a temporary mint, which is used as 
backup. 
 

Software Provisioning Agent: This agent is responsible for 
coordinating the deployment and reversion of software 
releases, in particular to super peer nodes. 
 
 
 
5. INFERENCES 
 
In the original Bitcoin [1] concept consisting of a hash based 
proof-of-work chain, attackers (common computers) can 
double spend the Bitcoins if they construct an alternate block 
chain faster than the original chain. Given our assumption that 
p>q (p: probability of an honest node finding the next block, q: 
probablity the attacker finds the next block) the probability 
drops exponentially as the number of blocks the attacker has 
to catch up with increases. Thus, the odds being against him, if 
the attacker doesn’t cover a considerable amount of blocks 
early on, his chances to catch up become vanishingly small. 
We thus see what is the probablity the attacker can filtrate the 
block chain and try to re-spend the money and how we can 
minimize it. We also suggest much more efficient but complex 
alternate methods in order to keep the block chain secure. One 
of the methods is Momentum [4], which is a memory hard 
proof-of-work which is basically the synchronous combination 
of the Birthday Problem [6] algorithm, which works towards 
finding a match, and certain hashing functions, which are also 
used, in the traditional proof-of-work systems. This method 
proves to be much more efficient in maintaining a block chain 
based proof-of-work and protecting it from attacks from 
external hardware such as graphic cards. Another method, 
which was suggested, is the Proof-of-Stake [12] method, which 
has proved to be even more efficient than the method of 
Momentum. This method basically provides different nodes 
with different priorities based on the stake they hold. Some 
nodes are made superior to the other nodes. There is a central 
mint involved to which data is transferred and which transfers 
data to the other nodes. The transfer of data to/from the mint 
is coordinated by a backbone of nodes (certain important 
nodes which form the backbone). Any nodes in the network 
lacking stake or misbehaving in the network can be resisted 
and removed from the network by the other nodes having 

stake. This proposed system exhibits coordinated and 
cooperative behavior in contrast to the traditional Bitcoin 
implementation. The proof-of-stake method is to be put into 
action by 2016 followed by a year of public testing. 
 
6. CONCLUSION 
 

In this paper we see how a Bitcoin [1] network operates 
without the interference of a third party/financial 
institution. It does so by maintaining a publicly available 
hash based proof-of-work chain (block chain) consisting of 
all the transaction that have taken place in the network. The 
longest chain helps in keeping a track of the valid 
transactions that have taken place in due course of the 
network thus protecting the network from attacking nodes 
that look to attack the network by mingling with the 
transactions and re-spending the money they have already 
spent (double spending). We protect the chain by making 
sure the majority of the computational power lies with the 
honest nodes (Bitcoin Miners) so that the attacking nodes 
dont take over the control of the majority and infiltrate the 
network. This method still is susceptible to external 
hardware such as graphic cards. For this purpose we 
propose an alternate method known as the Momentum 
Method [4]. This method is a memory hard proof-of-work 
system which is a combination of the traditionally used hash 
functions and the functionality of the Birthday Problem [6] 
algorithm to give us a new class of proof-of-work algorithms 
that asymmetric in memory and time for finding a solution 
in comparisons to verifying the solution and which contains 
a significant amount of sequential operations. We also found 
a completely new but complex method to implement the 
proof-of-work in a much more efficient manner. This is the 
Proof-of-Stake [12] method in which the network consists of 
a central mint and the other nodes in the network are given 
superior priorities. Some nodes are made Super nodes or 
different agents that provide different functions and the 
other nodes are the full nodes. A few high priority nodes 
form the backbone of the network that transfer data to and 
from the central mint. The division of the nodes is done on 
the basis of the amount of stake held by each node and the 
rewards from the proof-of-work are split accordingly. Thus 
this method as we can see is based on the teamwork of the 
nodes. This proposed method is to be deployed in 2016 
followed by a year of public testing. We see that this Proof-
of-Stake method, though complex, proves to be the most 
effective and offers compelling benefits when it comes to 
maintaining and protecting the hash based proof-of-work 
chain in the Bitcoin network.  
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