
International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 259
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 An Analysis of the Hash-Based Proof-of-Work
Chain in the Bitcoin Network

Neel Gupte

Abstract—A Bitcoin Is an electronic payment method that is based on cryptographic proof instead of trust [1] allowing any two users to manage their
transactions without dependence on a third party organization (a financial institution). Each party can transfer Bitcoins to the other digitally by signing a
previous hash along with the public key of the next owner and so on. The Bitcoin network timestamps the transactions into blocks and hashes them into
a chain of a hash based proof-of-work [1] (block chain) and combining them into a block. Such a chain is known as a block chain. It is decided that the
longest block chain shall serve as the proof of the sequence of transactions witnessed by the network. Also it is a proof that it came from the largest pool
of computational power put in by Bitcoin Miners (people who help in generating new blocks for the proof-of-work in return for a bounty). A major issue
with the Bitcoin network is the problem of attacking nodes trying to double-spend the Bitcoin transactions i.e. re-spend the money they have already
spent. They can do so by trying to generate an alternate chain faster than the honest nodes. As long as these honest nodes manage the majority of
computational power, the attacker node wont be able to interfere with the block chain. In this paper we see how effective the traditional bitcoin proof-of-
work policy is against the attackers and what measures and methods can be adopted in order to nullify the probability of an attacker to interfere with the
block chain.

Index Terms—Bitcoin, Cryptocurreny, Block Chain, Hashing, Proof-of-Work, Double-spending, Momentum Method, Proof of Stake.

—————————— ——————————

1. INTRODUCTION

A peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another,
without the interference of a financial institution. Though
digital signatures provide a solution, main benefits are lost if a
trusted third party is still required to prevent double
spending. Hence we propose a solution to double spending
using a peer-to-peer network. The networks puts timestamps
on the transactions by hashing them into an ongoing chain of
hash based proof-of-work and combines these transactions
into block. The longest chain of these blocks i.e. the longest
block chain serves as a proof of the sequence of
events/transactions witnessed, but also it’s a proof that it
came from the largest pool of computational power. As long
as Bitcoin Miners (people who help in generating new blocks
for the block chain in return for a bounty) i.e. the non-
attacking nodes control the majority of the CPU power, they
will end up generating the longest and valid block chain,
which would get accepted in the network, thus preventing the
attacking nodes to modify the block chain. The network itself
requires a very minimal structure. Messages are broadcast on
a best effort basis and the nodes are allowed to leave the
network and then rejoin, accepting the longest and most valid
block chain as the proof-of-work as to what transactions took
place in the network while they were gone. Bitcoin is an
electronic payment system which is based on cryptographic
proof instead of trust thus allowing two users to handle
transactions with each other without depending on a third
party. Each user transfers the Bitcoins to the other user using
digitally by signing a previous hash along with public key of
the next owner and so on.
2. TRADITIONAL PROOF-OF-WORK

In order for the attacking node to interfere with the block
chain, it would have to simultaneously generate an alternate
chain of the hash based proof-of-work faster than the actual
block chain so that the attackers chain would be accepted as
the longest and treated as the new proof-of-work. Once the
attacker achieves this, his altered and faulty transactions are
accepted into the Bitcoin network allowing him to re-spend
any Bitcoins he has already spent. We consider the probability
of an attacker trying to generate an alternate chain faster than
the honest nodes In-spite of the attacker being successful; the
system does not open up to arbitrary changes or any kind of
attacks. This is possible because a node will not accept an
invalid transaction as payment and no honest node will accept
a block with it. Hence an attacking node can only change his
transactions in order to re-spend the money he has already
spent. The probability of an attacking node to catch up with
the block chain is analogous to a Gamblers Ruin problem. We
can calculate the probability that a gambler with unlimited
credit plays an infinite number of trials to reach breakeven or
that an attacker catches up with an honest block chain. [2]

A block in a block chain is said to have n confirmations if it

is a part of the valid chain with n blocks. It’s generally an
assumption that a transaction with enough number of
confirmations is safe from double spending.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 260
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

A merchant generally waits for n confirmations of the paying
users transaction and then provides the product. The chances
of the attacker successfully trying to double spend depends
upon his disadvantage i.e. the value of z at the time n
confirmations are reached. Here we use a model m more
accurately as a negative binomial variable. It is the number of
successes (blocks found by the attacker) before n failures
success [3]. The probability for a given value of m is

Once n blocks are found by the honest network in a period of
time during which m+1 blocks are found by the attacker, the
race starts with z=n-m-1.

It follows that the probability for the double spend to succeed
when the merchant waits for n confirmations is [3]:

3. MOMENTUM METHOD

The traditional method of maintaining a hash based proof-
of-work as proposed by Satoshi Nakamoto [1] is proved to
be effective against majority of the attacking nodes but it has
its own disadvantages. In general a proof-of-work schemes
are developed in such a way that they are difficult to solve
but relatively easier to verify. Most proof-of-work schemes
achieve their verification through just one round of an
embarrassingly parallel search algorithms [4]. These
algorithms quickly adapt themselves to graphic cards,
FPGAs, or even ASIC designs. Achieving this would give the
attacker a huge advantage over the common computer. In
crypto-currencies like Bitcoins, the main motive of the proof-
of-work is decentralization of trust. Thus, in such a case it is
mandatory that the proof-of-work is able to build resistance
towards the acceleration and optimization by various
graphic cards, FPGAs or ASIC designs. Hence, to avoid such
attacks using custom hardware, we introduce the concept of
memory-hard proof-of-work algorithms. One such approach
is the use a Sequential Memory Hard Function [5] such as
Srypt. But the issue with this approach is that it uses up a lot
of memory and as it does so, the ability to be easily verifiable
is lost.

To achieve the goal of being trivial to verify but memory
oriented to solve, the proof-of-work must have asymmetry
in the amount of memory required to validate the work.
Algorithms can be made memory-hard by requiring a
solution that depends upon the relationship between any
two or more parallel steps and thus benefit from the storage
of result in every parallel step. Performing just two or three
parallel steps and checking results and comparing them can
quickly verify the result. The most straightforward example
is finding collisions based upon the Birthday Problem [3]. In
probability theory, the birthday problem concerns the
probability that in a set of n randomly chosen people, some
pair of them will have the same birthday. By the pigeonhole
principle, the probability reaches 100 per cent when the
number of people reaches 367. However, 99 per cent
probability is reached with just 57 people, and 50 per cent
probability with 23 people. These conclusions assume that
each day of the year is equally probable for a birthday.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 261
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

The figure above shows us the advantage we get by recording
all n solutions while matching birthdays. We observe
graphically the benefit we achieve by remembering all n
solutions in the search for matching birthdays. If you increase
the requirement to finding 3 people with the same birthday
then the memory requirements exceed 1 gigabyte on average.
Any attempt to replace memory with computation would
force the algorithm to follow the q (n) curve, which is at such
an algorithmic disadvantage that massive parallelism cannot
overcome the need for memory to efficiently solve this issue.
The best hope is to generate potential matches in parallel but
results will have to be stored for most efficient solutions.

The most straightforward solution would need an array of a
few billion items and will have to check the memory after
finding a potential result. This approach will require around
500GB of RAM and hence is obviously impractical. Another
proposed solution is the use of an hash table which would
solve the memory issue but for an attacker, the hash table
becomes the source of slow atomic operations. The
embarrassingly parallel birthday generation step is restricted
by the need to synchronize the storage in the hash table. This
last synchronization step places a limit on the amount of
parallelism that can be employed [4].

Thus the algorithm being used in this paper basically
assumes a cryptographically secure hashing function Hash(x)
and a Sequential Memory-hard hashing function Birthday-
Hash(x) such as Scrypt. The algorithm for this proof-of-work
can be defined as:

Given a block of data D, calculate H = Hash(D). Find nonce
A and nonce B such that
BirthdayHash(A +H) == BirthdayHash(B+H)
If Hash(H + A + B) < TargetDifficulty then a result has been
found, otherwise keep searching [4].

In case of Bitcoins, along with being memory hard, the
proof-of-work must also be flexible enough. Hence, due to
this, the final step of the proof-of-work is to perform the hash

of data and both birthday nonces and check if the result is
below a certain value. This final step behaves just like Scrypt
based systems. We infer that the best result could be
achieved if we combine the birthday search with the
traditional memory hard function such as Scrypt.

With traditional proof-of-work systems like SHA256 or
Scrypt, it’s possible to gain performance by using parallelism
alone. However, the use of memory should scale to store the
result of every parallel run or the algorithmic disadvantage
would be lost. We see that the performance of the proof-of-
work increases with the time it runs filling the memory up
with potential birthday matches. As a result, this algorithm
has some momentum to it making it expensive to restart the
search with a new data block. This momentum proves to be
very useful for the Bitcoin miners as they could gain some
advantage by adjusting the structure of the block being
mined every time new data is available. An efficient strategy
of mining is to cache all the received transactions while
mining the current block until someone finds the current
block, and then he could create a new block consisting of all
the transactions cached. This property means that a
transaction broadcast 5 seconds after the last block was
found has no advantage over a transaction broadcast 5
minutes after the last block was found because few miners
will begin working on including either transaction until the
next block is found. It is because of the momentum property
that we have named this proof of work system
Momentum[4].

4. PROOF-OF-STAKE METHOD

Satoshi Nakamoto’s [1] Bitcoin software assumes a faulty
and insecure and adversarial peer-to-peer environment.
There is no distinction with respect ot the capabilities of full
node peers, nor of the mesh network connections between
them. Transactions are relayed and accepted into the block
chain on best effort basis. A new transaction reaches 50 per
cent of the nodes within 1.2 seconds and 90 per cent within
2.9 seconds [7]. Transactions are not timestamped. There is
no definite version of the blockchain. A hard-fork
reconfiguration of the peer-to-peer Bitcoin network is
described that substitutes tamper-evident logs and proof-of-
stake consensus for proof-of-work consensus. Proof-of-stake
was first mentioned in July, 2011 by Quantum Mechanic[8]
Stake-voting as a method to achieve distributed consensus
for building the blockchain was not available as an option to
Satoshi because Bitcoin started in 2009 with no stake. In
contrast to the original Bitcoin, the system as proposed by
Nick Szabo [9] [10][11], exhibits a coordinated behavior.
According to him, a trust independent cooperation would be
possible through authenticated peer attestation of correct
behavior. Consensus is mainly required when misbehavior is
detected. The method resists adversaries lacking satisfactory
amount of stake. A faulty or misbehaving node is

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 262
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

disconnected from the network by a group of stake-weighted
peers. A central mint directly receives the transactions and
records its arrivals followed by a broadcast of the accepted
transaction to its peers. Since there is single mint, proof-of-
work is not needed. As mentioned by Szabo, this mint system
is prone to problems such as centralization and lack of
redundancy. Failure of the mint causes failure of the entire
network. Thus the proof-of-stake system is implemented as a
hierarchical network of transparent nomadic software agents
executing a common open-source software program with
differing roles. There are no humans in the loop except as
owners of nodes, which host the agents. The human node
owner may offer a controlled bitcoin address-containing stake
in return for daily dividends, but is otherwise anonymous
[12].

This paid for enterprise class network is configured as a
super peer network [13] and is capable of handling
transactions all over the world. In this system, certain nodes
are given priorities and capabilities superior to the other nodes
in the network. These super peer nodes act as the backbone of
the network. The traffic flows through these backbone nodes
to reach the mint. The accepted transactions and new hashes
flow out from the mint to the nodes. Each node has several
connections to super peers. Along with the branded entities
super peer nodes, full nodes exist that serve hosted wallets,
payment processors, exchanges. Such full nodes are likely to
be connected to reliable branded super peers.

This system uses an attestable unforgeable log

organization inspired by Nick Szabo. This system uses an
attested append only memory. It remains correct and keeps
making progress even when half the replicas are faulty.

Each full node present in the network has a synchronous
replica of the single block chain in the network and
consensus agreement as to the latest block hash and the time
stamped order of the accepted transactions. All the nodes
agree upon the date and time and the calendar of the super
peer agent activities. Every full and super node has an
identical software capable of performing any particular role.
Every node in the network validates and maintains a copy of
the single, longest blockchain and the current hash.

A new full node is given a set of peer nodes. This node
checks for the fitness of its peers. The new node solicits the
members of the set of super-peers from 10 randomly
connected nodes. The new node then connects to three super
peers, which have low latency provided they are willing to
accept additional full nodes. The new node provides
justification as to if it should be a member of the super-peer
set when asked by the unique configuration node.

The new node provides justification as to if it should be a
member of the super-peer set when asked by the unique
configuration node [12]. In this algorithm, super peer nodes
host a variety of agents. A brief description of these agents is
given below:

Configuration Agent: The single configuration agent, which
is hosted by a super peer node, has the responsibility of
choosing which nodes are super-peers and setting the
schedule of the nomadic agents i.e. the agents that haven’t
been assigned a responsibility as yet.

Seed Agents: The seed agents, hosted by super peer nodes,
have the responsibility for seeding full nodes that join the
network. The seeded full node selects the seeding agent
having the optimal combination of low latency and current
load.

Mint Agents: The mint agents hosted by a super peer node
has the responsibility of creating new blocks and minting
new coins. New blocks are generated at the rate of six blocks
per hour. Received transactions are immediately broadcast
back into the network so that all full nodes may build the
new block in synchronization with the mint agent.

Reward Agent: The reward agent distributes dividends
daily to full nodes. By default, full nodes are compensated
for their operating costs by a fixed proportion, and
additionally receive a reward in proportion to their offered
stake.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 263
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Audit Agents: The primary audit agent is a singleton having
the responsibility of a passive and active auditor. It receives
reports of any inconsistencies from any other node, e.g. some
disagreement among the nodes, and then investigates it. The
secondary audit agents perform random checks that support
the functionality of the primary audit agent and in certain
cases offloads audit tasks for parallelization.

Recovery Agent: The recovery agent is a single node, which
has the responsibility of performing fault-recovery. A typical
fault recovery in case of a defective mint would be the rollback
of the last committed block, moving its transactions into a
replacement block by a temporary mint, which is used as
backup.

Software Provisioning Agent: This agent is responsible for
coordinating the deployment and reversion of software
releases, in particular to super peer nodes.

5. INFERENCES

In the original Bitcoin [1] concept consisting of a hash based
proof-of-work chain, attackers (common computers) can
double spend the Bitcoins if they construct an alternate block
chain faster than the original chain. Given our assumption that
p>q (p: probability of an honest node finding the next block, q:
probablity the attacker finds the next block) the probability
drops exponentially as the number of blocks the attacker has
to catch up with increases. Thus, the odds being against him, if
the attacker doesn’t cover a considerable amount of blocks
early on, his chances to catch up become vanishingly small.
We thus see what is the probablity the attacker can filtrate the
block chain and try to re-spend the money and how we can
minimize it. We also suggest much more efficient but complex
alternate methods in order to keep the block chain secure. One
of the methods is Momentum [4], which is a memory hard
proof-of-work which is basically the synchronous combination
of the Birthday Problem [6] algorithm, which works towards
finding a match, and certain hashing functions, which are also
used, in the traditional proof-of-work systems. This method
proves to be much more efficient in maintaining a block chain
based proof-of-work and protecting it from attacks from
external hardware such as graphic cards. Another method,
which was suggested, is the Proof-of-Stake [12] method, which
has proved to be even more efficient than the method of
Momentum. This method basically provides different nodes
with different priorities based on the stake they hold. Some
nodes are made superior to the other nodes. There is a central
mint involved to which data is transferred and which transfers
data to the other nodes. The transfer of data to/from the mint
is coordinated by a backbone of nodes (certain important
nodes which form the backbone). Any nodes in the network
lacking stake or misbehaving in the network can be resisted
and removed from the network by the other nodes having

stake. This proposed system exhibits coordinated and
cooperative behavior in contrast to the traditional Bitcoin
implementation. The proof-of-stake method is to be put into
action by 2016 followed by a year of public testing.

6. CONCLUSION

In this paper we see how a Bitcoin [1] network operates
without the interference of a third party/financial
institution. It does so by maintaining a publicly available
hash based proof-of-work chain (block chain) consisting of
all the transaction that have taken place in the network. The
longest chain helps in keeping a track of the valid
transactions that have taken place in due course of the
network thus protecting the network from attacking nodes
that look to attack the network by mingling with the
transactions and re-spending the money they have already
spent (double spending). We protect the chain by making
sure the majority of the computational power lies with the
honest nodes (Bitcoin Miners) so that the attacking nodes
dont take over the control of the majority and infiltrate the
network. This method still is susceptible to external
hardware such as graphic cards. For this purpose we
propose an alternate method known as the Momentum
Method [4]. This method is a memory hard proof-of-work
system which is a combination of the traditionally used hash
functions and the functionality of the Birthday Problem [6]
algorithm to give us a new class of proof-of-work algorithms
that asymmetric in memory and time for finding a solution
in comparisons to verifying the solution and which contains
a significant amount of sequential operations. We also found
a completely new but complex method to implement the
proof-of-work in a much more efficient manner. This is the
Proof-of-Stake [12] method in which the network consists of
a central mint and the other nodes in the network are given
superior priorities. Some nodes are made Super nodes or
different agents that provide different functions and the
other nodes are the full nodes. A few high priority nodes
form the backbone of the network that transfer data to and
from the central mint. The division of the nodes is done on
the basis of the amount of stake held by each node and the
rewards from the proof-of-work are split accordingly. Thus
this method as we can see is based on the teamwork of the
nodes. This proposed method is to be deployed in 2016
followed by a year of public testing. We see that this Proof-
of-Stake method, though complex, proves to be the most
effective and offers compelling benefits when it comes to
maintaining and protecting the hash based proof-of-work
chain in the Bitcoin network.

REFERENCES

[1] Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic
Cash System, 2009.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 264
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

[2] W. Feller, ”An introduction to probability theory and its
applications”, 1957.

[3] Meni Rosenfeld, Analysis of Hashrate-based double

spending, December 13, 2012.

[4] Daniel Larimer, ”Momentum- A Memory-Hard Proof-
Of-Work via Finding Birthday Collisions, December
2006.

[5] Colin Percival, Stronger Key Derivation Via Sequential

Memory-Hard Functions, October 2003.

[6] Roberts Matthews, Fiona Stones, Coincidences: the truth
is out there, 2008.

[7] BitcoinStats,

http://bitcoinstats.com/network/propagation/

[8] QuantumMechanic, Proof of Stake Instead of Proof of
Work, July 10, 2011.

[9] Nick Szabo, Distributing Authorities and Verifying Their

Claims, 1997.
[10] Nick Szabo, The God Protocols, 1999.
[11] Nick Szabo, Confidential Auditing, 1998
[12] Stephen L. Reed, Bitcoin Cooperative Proof-of-stake, May

21, 2014.
[13] Beverly Yang, Hector Garcia-Molina, Designing a super-

peer network, 2003. IJSER

http://www.ijser.org/

